Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Here we introduce a series of associative algebras attached to a vertex operator algebra V of CFT type, called mode transition algebras, and show they reflect both algebraic properties of V and geometric constructions on moduli of curves. Pointed and coordinatized curves, labeled by admissible V-modules, give rise to sheaves of coinvariants. We show that if the mode transition algebras admit multiplicative identities satisfying certain natural properties (called strong identity elements), these sheaves deform as wanted on families of curves with nodes. This provides new contexts in which coherent sheaves of coinvariants form vector bundles. We also show that mode transition algebras carry information about higher level Zhu algebras and generalized Verma modules. To illustrate, we explicitly describe the higher level Zhu algebras of the Heisenberg vertex operator algebra, proving a conjecture of Addabbo–Barron.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            We provide a uniform bound for the index of cohomology classes over semiglobal fields (i.e., over one-variable function fields over a complete discretely valued field K). The bound is given in terms of the analogous data for the residue field of K and its finitely generated extensions of transcendence degree at most one. We also obtain analogous bounds for collections of cohomology classes. Our results provide recursive formulas for function fields over higher rank complete discretely valued fields, and explicit bounds in some cases when the information on the residue field is known. In the process, we prove a splitting result for cohomology classes of degree 3 in the context of surfaces over finite fields. ∗more » « less
- 
            Abstract We describe a framework for constructing an efficient non-interactive key exchange (NIKE) protocol for n parties for any n ≥ 2. Our approach is based on the problem of computing isogenies between isogenous elliptic curves, which is believed to be difficult. We do not obtain a working protocol because of a missing step that is currently an open mathematical problem. What we need to complete our protocol is an efficient algorithm that takes as input an abelian variety presented as a product of isogenous elliptic curves, and outputs an isomorphism invariant of the abelian variety. Our framework builds a cryptographic invariant map , which is a new primitive closely related to a cryptographic multilinear map, but whose range does not necessarily have a group structure. Nevertheless, we show that a cryptographic invariant map can be used to build several cryptographic primitives, including NIKE, that were previously constructed from multilinear maps and indistinguishability obfuscation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
